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Part I

Where we learn about computational

modeling, discretization of PDEs, and

develop two simple discrete models (with

mixed success)
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Computational science
Use computers for discovery of
new physics, design validation,

proof of concept, virtual
prototyping

Numerical math
Convert to models that
can be solved on digital

computers

Applied math
Use a formal language
to encode a physical

process

What is this talk about?

Physics

Mathematical
 model

Numerical 
model

Solution 
algorithms Computer science

Find faster and more
efficient ways to solve

numerical models
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Mathematical
 model

Numerical 
model

Focus on Numerical Math

Discretization
=

Model reduction

Numerical math
Convert to models that
can be solved on digital

computers

1. Is the sequence of algebraic equations well-behaved?
   - are all problems uniquely and stably (in h) solvable?
    - do solutions converge to the exact solutions as h→0?

2. Are physical and discrete models compatible?
    - are solutions physically meaningful
    - do they mimic, e.g., invariants, symmetries, 
      or involutions of actual states

3. How to make a compatible & accurate discretization?
    - how to choose the variables and where to place them;
    - how to avoid spurious solutions.

  

! 

Au = f

  

! 

A
h
u
h

= f
h

a parameterized
family of algebraic

equations

mathematical model
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A toy problem

! 

"ay ' '+by '+cy = f   in  (0,1)

y(0) = y(1) = 0 0 1

Boundary value problem
y(x)

x

y(0) y(1)

continuum

x0 x2 xi xnxi+1

yi

y0 yn

discrete

! 

y' '(xi) "
yi+1 # 2yi + yi#1

h
2

y'(xi) "
yi+1 # yi#1

2h

! 

"ai
yi+1 " 2yi + yi"1

h
2

+ bi
yi+1 " yi"1

2h
+ ciyi = f i

y
0

= yn = 0

Parameterized linear system
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Porous Media Flow

  

! 

"# $ %#p = f  in  &

p = 0  on  '

Boundary value problem

Steady state saturation in a site scale model of
Yucca Mountain, Nevada. Model area is 1.7X4.2
square miles. Calculations like this are used for
evaluating the suitability of Yucca Mountain as a
potential repository for high level nuclear waste.
Courtesy LANL EES Division.

f - source term
p - pressure
ρ - permeability tensor   

Reservoir simulation can be used to forecast the
production of oil and gas fields, optimize reservoir
development, and evaluate the distribution of
remaining oil. It is an important tool to improve the
design of wells, the efficiency of reservoirs, and
enhance oil and gas recovery.Courtesy Prof. J.
Chen, SMU
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Darcy problem

x
i

j

xij  

! 

" # $u = f  in %

u+"p = 0  on %

p = 0  on &

Equivalent 1st order form

In such applications, velocity u, rather than the
pressure p is the variable of primary interest,

and direct approximation is desirable.

y

Discretized domain
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PDE→Parameterized Linear System
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+
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= 0

uij
2

+
pi, j+1 " pi, j"1

2h
= 0

! 

u
1
+ px = 0

Continuum Discrete Stencil

Collocated discretization: variables share same grid location

Divergence and gradient discretized by the same stencil 
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Computational example

Complete DISASTER (  ) 
Our discrete model is incompatible
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! 

10
"4

mm
  

! 

3.3"10
3
mm

Coupled multiscale, nonlinear physics is even more
challenging: Z-Pinch simulation in ALEGRA

Scales: 
PULSE DURATION 10-9 sec
TIME SCALE 10-3 sec
CURRENT POWER 20x106 A
X-RAY POWER 1012 W
X-RAY ENERGY 1.9x106 J

Z-machine: (Ostensibly used by Ocean’s 11)
Electric currents are used to produce an
ionized gas by vaporizing a spool-of-thread
sized array of 100-400 wires of diameter
≈ 10µm

  

! 

3"10
2
mm

C. Garasi, A. Robinson

MHD MODEL
 = 

Hydrodynamics + Magnetic Diffusion
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Magnetic diffusion

  

! 

" #
1

µ
B =$E  Ampere

" #E = %
&B

&t
  Faraday

Gap modeled as a
heterogeneous

conductor
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Compatible vs. Collocated: B-field

Collocated
Ker(curl)={0}

Compatible
Ker(curl)={grad p}
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Part II

Where we learn about duality, its role in

PDE structure and what it can tell us about

compatible discretizations



Computational mathematics and algorithms  

All you ever wanted to know about duality
(but were afraid to ask)

In mathematics “duality” is used in two contexts

1. Duality pairing

The process of combining two objects to generate a scalar

! 

a
T
b" a,b Vector a dual to co-vector b

! 

f (x)" f ,x Function f dual to its argument x

! 

f
"

# $ f ," Function f dual to integration domain Ω

! 

fg
"

# $ f ,g Function f dual to distribution g 

! 

f g " f ,g Bra vector f dual to ket vector g 

! 

Fd" F,d Force F dual to displacement d
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Leads to the fundamental notions of adjoint and self-adjoint operators

! 

Aa,b = a,A
T
b

! 

b
T
Aa = a

T
A

T
b Adjoint of a matrix A  is the transpose

! 

" # v,$ = v,%$

! 

" # v
$

% = n # v
&$

% Adjoint of divergence is boundary

! 

u" # v
$

% = & "u # v
$

%

! 

u," # v = $"u,v Adjoint of divergence is -gradient

! 

"#uv
$

% = "#vu
$

%

! 

"#u,v = u,"#v Laplacian is self-adjoint

! 

Af ,g = f ,A
*
g

! 

A = A
*
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A second duality concept
2. Duality of representations

The process of using complementary descriptions of the same process

Fluid flow

velocity Mass flow

Needed forConcept of force Concept of source
  Measured   Along a line    Across a surface

E J

Electron flow
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Darcy problem deconstructed
Constitutive 

! 

v = "u

Kinematic Continuity

! 

" # v = 0

Duality is
ubiquitous!

Line field Surface field 

Gradient Divergence

Forces Sources! 

u+"p = 0

Duality structure can be encoded by the following diagram

scalar 
(source)

surface field

∇•

domain

rangescalar
(force)

line field

∇

domain

range
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Compatible discretizations

A compatible discretization should mimic the duality structure of the PDE

scalar
(force)

line field

scalar 
(source)

surface field

∇ ∇•

domain

domain

range

range

We need to build a discrete analogue of this diagram!
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1. Compatible representations

scalar
(force)

line field

scalar 
(source)

surface field

Nodal value Cell average

Face fluxEdge circulation
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+

-

2. Compatible discrete operators

! 

Gp =
p
2
" p

1

h

Nodal value Cell average

Face fluxEdge circulation

-
+

! 

Du =
"

B
+"

R
#"

T
#"

L

h

Edge #

Node #
Face #

Cell #
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3. Putting it together

G D

# nodes = 8 # cells = 1

# faces = 6# edges = 12

Mission Impossible?!

In the discrete world two different
viewpoints cannot coexist at the

same grid location!

?

?
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Solution #1 Primal-Dual Grid Complex

G D
Staggered grid discretizations
Covolume (Delaunay-Voronoi)

Box Integration Method
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Not always feasible
Topologically dual grids hard to maintain for unstructured meshes

such as arising in ALE computations
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Solution #2: cheat cleverly

DG
  SOM - Samarskii, Shashkov
  Mimetic FD - Hyman, Shashkov,Steinberg
  Mixed FEM - Raviart, Brezzi, Fortin

G approximated by the discrete codifferential
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So what went wrong earlier?

1. We used the same discrete representation for all (!)
fields which was incompatible with their physical
meaning and their places in the domain and the
range of the gradient and divergence operators
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The loss of coexistence

! 

" # v = 0

u+"p = 0

v $ %u = 0

! 

" # $u = 0

u+"p = 0

In the continuum world line and surface fields can coexist at
the same point in space:
⇒ Only one vector field can be used in the model
⇒ The other can be eliminated:

Unfortunately, in the discrete world line and surface fields
cannot coexist at the same grid location

⇒ Either both types must be retained (requires primal-dual grid)
⇒ Or one of the operators must be modified

! 

v = "u
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Collocated discrete operators
can’t work properly!

! 

ui+1, j
1

! 

ui"1, j
1

! 

ui, j"1
2

! 

fij

! 

pi+1, j
! 

pi, j+1

! 

pi" i, j

! 

pi, j"1

! 

uij
2

! 

uij
1

+ +

--

Discrete gradient Discrete divergence

node → node node → node

node → edge face → centerAdjoint of discrete
divergence is boundary

⇓

⇓
Conservative method

! 

" # v
$

% = n # v
&$

%

Adjoint of discrete
divergence not boundary

⇓

⇓
Non-conservative method

! 

" # v
$

% = n # v
&$

%
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Is this stuff useful in other cases?

Line field

Surface field

Surface field

Line field

Many other important models have identical duality structure

∇ ∇

domain

domain

range

range

! 

"B

"t
= #$ %E

! 

" #H = J

! 

B = µH

! 

J ="E

E & J  provide dual description of electric phenomena
B & H provide dual description of magnetic phenomena
Curl is self-adjoint.

Yee FDTD scheme (1966), FIT (Weiland), Co-volume (Nicolaides), FEM (Bossavit, Nedelec)
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Part III

The afternoon talk:

-The formal math behind compatible discretizations

-A fresh look at least-squares principles

Springer IMA Lecture Notes 142. 

Spatial Compatible Discretizations
Eds. D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, M. Shashkov

http://www.ima.umn.edu/talks/workshops/5-11-15.2004

Bonus
The origin of “mimetic” revealed!!
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A heads up: what is a derivative?
1-dimension: it is a velocity
n-dimensions: two possible viewpoints

“Vector calculus”

“Exterior calculus”
Based on the idea of duality between sections of Λr bundles and r-manifolds
– Derivative = adjoint of the boundary operator

– Coordinate & metric independent.

! 

dF," = F,#"

Based on the idea of approximation of a mapping by a linear function
– Derivative = differential (slope) of the linear map

– Coordinate & metric dependent.

! 

F(x) = F(x
0
) + dF(x

0
)(x " x

0
) + o(x

2
)
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Differential geometry
Compatible discretization:

algebraic equations that describe “actual” physical systems.

Differential forms provide the tools to encode such relationships

- Integration:  an abstraction of the measurement process
- Differentiation:  equality of mixed partials gives rise to local invariants
- Poincare Lemma: expresses local geometric relations
- Stokes Theorem: expresses global relations (differentiation + integration)

-  Fields are observed indirectly by measuring global quantities (flux, circulation, etc)
-  Physical laws are relationships between global quantities (conservation, equilibrium)

Requires to discover structure and invariants of physical systems and then
copy them to a discrete system
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Algebraic topology

Mimetic and co-volume methods fit this reduction model

- Vector fields represented by their integrals (fluxes or circulations)

- Differential operators defined via Stokes Theorem (coordinate-invariant)

- Primal and dual equations/operators (B and BT) and an inner product (A)

1.  System states are differential forms reduced to co-chains

2.  Exterior differentiation approximated by the co-boundary operator

3.  Dual operators defined using Hodge * operator

Branin (1966), Dodzuik (1976), Hyman & Scovel (1988-92), Mattiussi (1997), Teixeira (2001)

Algebraic topology provides the tools to copy the structure
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The Formal Math: Differential Complexes

De Rham Cohomology

Primal

Dual

Hodge 

  

! 

W
0 "# $ # W

1 "%# $ # W
2 "•# $ # W

3

b b b b

˜ W 
3 "•& # # ˜ W 

2 "%& # # ˜ W 
1 "& # # ˜ W 

0

! 

d d d

d d d

Exactness:

! 

dd = 0

Existence of potentials:
! 

d" k
= 0 # " k

= d" k$1Poincare Lemma

surjection

! 

"# = 0 $ # = Const

" %E = 0 $ E ="&

" 'B = 0 $ B =" %A

exact sequence
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Factorization Diagrams

      

! 

Primal    Hodge operator  Dual

0" form # $ % = &# ' " (% 3" form

d
0 ' ) ) • $ d

2

1" form "u $ q =&u ' q 2" form

We used
k=1

Factorization diagram

metric

W
k!1

"#µ $
˜ W 

n! k+1

d
k!1

% & d
n! k

W
k

"#' $
˜ W 

n !k

topology topology

“All” 2nd order PDE’s

! 

a "#µ $ %&

d
k%1 ' ( d

n%k

% b "#) $ *

Equilibrium
Constitutive

! 

" = #$ & q = #u

! 

" #W
0 $ # ˜ W 

3

! 

u"W
1
q" ˜ W 

2

! 

"u =#$ & # %q = "&'

Tonti (1974), Bossavit (1989), Hiptmair (2000)

Note that   

! 

q"W
2
# d

1
q (i.e. $ %q)  not meaningful!
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Discrete Differential Complexes

Discrete De Rham complex

Discrete Exactness:

! 

d
h
d
h

= 0

Primal

Dual

Hodge h
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h
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h
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h

DB
h
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= CA
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Poincare Lemma
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d
h
"

h

k
= 0 # " k

= d
h
"

h

k$1

Existence of potentials:

surjection

exact sequence
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Where are the Compatible Methods?

! 

W
h

k"1
#$µ

h
% ˜ W 

h

n"k +1

d
k"1

& ' d
n"k

W
h

k
#$(

h
% ˜ W 

h

n"k

Primal-dual 

Typical: co-volume, FV

– Use topologically dual grids
– 2 equilibrium relations   → exact 
– 2 constitutive relations  → exact

Typical: FEM, Mimetic FD

–     Use single grid
–     1 equilibrium relation → exact
–     2 constitutive relation → exact

! 

W
h

k"1

#$µ %
˜ W 

h

n"k +1

d
h

k"1
& ' d

h

n"k

W
h

k
#$( %

˜ W 
h

n"k

Elimination
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W
h

k"1
# I# W

h

k"1

d
k"1

$ M d
n"k

W
h

k
# I# W

h

k

Discrete Factorization diagram

Discrete
Hodge

Tonti (1974)
Bossavit (1989)
Mattiussi (1997)
Teixeira (1999)
Hiptmair (2000)
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Algebraic Topology Approach
1. System reduction

3 exact sequences: (W0, W1, W2, W3), (C0, C1, C2, C3), (C0, C1, C2, C3)

  

! 

LW
k

d
" # " W

k+1
L

$ $

LC
k %
" # " C

k+1L

b b

LC
k

&
" # " C

k+1
L

forms

co-chains

chains

DeRham map
  

! 

" R :W
k
#C

k

, R$,c = $
c

%

Fundamental property:   

! 

Rd = "R

  

! 

"R#,c = R#,$c = #
$c

% = d#
c

% = Rd#,c

{G,D,C} ← δ approximates d → {grad,curl,div}

Commuting Diagram I
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W
k

d
" # " W
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$ $

C
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" # " C
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! 

R  

! 

R
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Algebraic Topology Approach
2. Inner products and dual operators

Inner product 

! 

" :W
k
#W

n$k

  

! 

I :C
k
"W

k

! 

W
k
"W

k

! 

",#( )
W

= "$%#
&

'

Inner product 

! 

C
k
"C

k

  

! 

a,b( )
c

= Ia ,Ib( ) = Ia"#Ib
$

% = aTMb

Dual operators

  

! 

"a,b( )
c

= a,"*
b( ) →  G*, C*, D*

C*G*=D*C*=0    requires   

! 

dI =I"

Commuting Diagram II

! 

C
k "
# $ # C

k+1

% %

W
k

d
# $ # W

k+1

  

! 

I   

! 

I
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Algebraic Topology Framework: Summary
1. Structures: 

(W0, W1, W2, W3)       Forms 
(C0, C1, C2, C3)        Chains
(C0, C1, C2, C3)        Co-chains

2. De Rham map

3. Interpolation operator

4. Inner product

5. Primal and dual operators

        {G,C,D} & {G*,C*,D*} 

  

! 

R :W
k
"C

k

  

! 

Rd = "R
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I :C
k
"W

k   

! 

dI =I"
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a,b( )
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= Ia,Ib( )

! 

M
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W
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d
" # " W

k+1

$ $

C
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" # " C

k+1
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R  

! 

R

! 

C
k "
# $ # C

k+1

% %

W
k

d
# $ # W

k+1

  

! 

I   

! 

I

CDP 1

CDP 2

Geometric compatibility
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What does geometric compatibility buy you?

  

! 

d" = 0 # $R" = 0

Co-cycles of (W0, W1, W2, W3)               co-cycles of (C0, C1, C2, C3)  

! 

R
" # " 

Discrete Poincare lemma (existence of potentials in contractible domains)

! 

d"
k

= 0 # "
k

= d"
k+1

! 

"c
k

= 0 # c
k

= "c
k+1

Discrete Stokes Theorem

! 

d"
k#1
,c

k
= "

k#1
,$c

k

! 

"c
k#1
,c

k
= c

k#1
,$c

k

Discrete “Vector Calculus”

! 

dd = 0

! 

"" = 0# CG = DC = 0; C*G* = D*C* = 0 

Any feature of the continuum system that is implied by differential forms calculus
is inherited by the discrete model

Called mimetic property by Hyman and Scovel (1988)
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Conclusions

• Discretization is a model reduction
• Careless discretization causes unphysical

behavior
• Compatible discretizations mimic continuum

structures
•  Differential geometry provides the tools to

encode this structure
• Algebraic topology provides the tools to copy

the structure to discrete models
• Cheating is possible but requires “stabilization”,

some or all conservative properties are lost.



Computational mathematics and algorithms  

Network Equations
Equilibrium conditions

p1 p
2

p3

p4 p
5

p6

p7 p
8

p9

u1 u2

u3 u4 u5

u
8

u9 u10
u6 u7

u11 u12

Constitutive 
equation
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i
u
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Kinematic relation
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Continuity relation
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! 

p"  "pressure"

u"  " velocity"

# "  "density"

v"  " flow"

   Force             ← concept →             source
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Further examples of incompatibility

! 

" # a$( ) = f

Advection of a scalar
quantity

An extremely simplified
case of a transport

problem

Seemingly reasonable
fixes can make things

even worse.


